Subtraction

17 - 9 = 8

minuend - subtrahend = difference

and

Addition

8 + 9 = 17

addend + addend = sum

'Tools to think with'

It is important that as children move through KS1 they develop their conceptual understanding of subtraction as "difference". A concept of subtraction only as "taking away" is limited and limiting, since it relies heavily on counting and on the action of removing one amount from another and then finding the answer (what's left) through counting. To be able to calculate with fluency and understanding, children need a range of experiences to develop their understanding of difference. Children will be unable to subtract using negative numbers unless their understanding of difference is secure.

Number relationships

Partitioning sets

Children need to experience addition and subtraction using a wide range of real objects in real-life contexts as well as using unstructured (Multilink, Unifix, counters) and structured (Numicon, five rack/ten frame, Rekenrek) mathematical 'tools to think with'.

12 - 5

Removing items from a set (reduction or take-away)

An important initial stage using real-life objects .

Issue

Relies on counting out the 12 objects, counting the 5 to be taken away and then counting the objects left.

If objects are actually removed from sight, children find it difficult to remember how many they started with, how many have been removed and what the counting of the objects left actually means.

Does not develop connections and fluency

12 - 5

Seeing one set as partitioned

Promotes connections and fluency

Children see that 12 is made up of 5 and 7

Helps children to see the related facts 5 + 7 = 12, 7 + 5 = 12, 12 - 7 = 5 and 12 - 5 = 7all in the same model.

Numicon

Children need to experience addition and subtraction using a wide range of real objects in real-life contexts, as well as using unstructured (Multilink, Unifix, counters) and structured mathematical 'tools to think with' (Numicon, five rack/ten frame, Rekenrek).

Working within 20, children take, for example, a 5 Numicon and a 3 Numicon. Then, they find the Numicon that is equal to the 5 and the 3 and say how many in total without counting.

The children can do this because they are **fluent** in their recognition of Numicon plates/shapesthey know them by their colour, they associate a quantity/number with the colour and importantly, they also know the Numicon by it's structure through 'feely bag' work - so that they can also talk about the structure of the holes in each Numicon plate/shape.

Children experience adding more that two quantities together so that they begin to develop their understanding of the associative law.

6 + 3 + 4 = 6 + 4 + 3

This is also shown on numbered number line and then on a blank number line.

Addition and Subtraction *within 10*

Making connections - learning number bonds

4. Repeat at least 10 times.

Children can record in different ways

5 and 3 make 8

5 + 3 = 8

8 - 3 = 5

Using this model children can show the connections between addition and subtraction.

It is also a very useful model when partitioning larger numbers for addition.

Addition and Subtraction within 20

Unitising ten

Double Ten Frame Addition

Resources: counters, ten frames, numeral cards 0 - 10

Note: **No counting** - children should now know how many are on the five rack, ten frame without needing to count and therefore they can add the correct number of counters, and say and record how many in total without counting.

- 1. Place a number of counters onto your frame (this number could be fixed - say 7 counters)
- 2. Turn over a numeral card and add that number of counters to your frame.
- How many counters did you start with? How many counters did you add? How many counters are there altogether? Record your thinking.
- 4. Repeat at least 10 times.

To develop visualisation skills children could visualise the addition of the counters and say how many counters they would have altogether.

Double Ten Frame Subtraction

Resources: counters, ten frames, numeral cards 0 - 15

Note: **No counting** - children should now know how many are on the five rack, ten frame without needing to count and therefore they can remove the correct number of counters, and say and record how many are left without counting.

- 1. Place one counter in each of the 3 rows of your frame (15 in total).
- 2. Turn over a numeral card and remove that number of counters from your frame.
- 3. How many counters did you start with? How many counters did you take off? How many counters are left? Record your thinking.
- 4. Repeat at least 10 times.

To develop visualisation skills children could visualise the removal of the counters and say how many counters would be left.

Addition - mental with jottings

Using place value to partition and fluency with number bonds

Partitioning numbers in different ways

Number bonds

There are very important statements in the Notes and Guidance (non-statutory) on page 11 (Year 2) and page 18 (Year 3) of the National Curriculum 2013 Programme of study - Number and place value.

In Year 2 it states that:

Pupils should partition numbers in different ways, for example

23 = 20 + 3 and 23 = 10 + 13 *to support calculation*

They become fluent and apply their knowledge of numbers to reason with, discuss and solve problems that emphasise the value of each digit in two-digit numbers.

In Year 3 it states that:

They use larger numbers to at least 1000, applying partitioning related to place value using varied and increasingly complex problems, **building on work in year 2**, for example,

146 = 100 + 40 and 6, and 146 = 130 + 16 to support calculation

It is important that *partitioning in different ways* is learnt through the use of *different* **representations** for place value such as, straws, Dienes or Big Base.

Writing *numbers in words also* supports the development of this understanding.

Try watching Yeap Ban Har's video on YouTube:

Number bonds in Singapore mathematics

http://www.youtube.com/watch?v=9HP-8RfOju4

"Number bonds are a platform for teachers to teach students decision making, building their number sense. Under what conditions, under what situations, what actions do you take? "

(Yeap Ban Har Number bonds YouTube)

Numicon

Children need to be fluent in their recognition of all the Numicon plates/shapes (the colour, the number and the structure of the holes) in order to be able to use them for developing conceptual understanding of difference.

Numicon

Children need to be fluent in their recognition of all the Numicon plates/shapes (the colour, the number and the structure of the holes) in order to be able to use them for developing conceptual understanding of difference.

What do you notice?

Resources: Numicon plates

Note: **No counting** - children must find the correct Numicon plate and say the difference without counting.

t is important that **children use** the language of 'the difference between' and this will need to be modelled both orally and in writing.

- Take two Numicon plates say the 7 plate and the 2 plate.
- Discuss the difference (in this case 5).
- Model increasing each of the original numbers by 10, by adding a ten plate to both the 7 and the 2 (so now we are finding the difference between 17 and 12),
- Ask children what they are finding the difference between now and what they notice?
- Ask What if...
 - What if We add ten to one of the numbers?
 - What if ... We add twenty to both numbers?
 - What if ... We add twenty to one of the numbers?

The slider can be moved and new statements about **a difference of three** can be made.

Make different size sliders of for children to explore the difference.

Explore and record pairs of numbers with a difference of 6:

- 0,6
- 3, 9

5, 11

7, 13

Look at two pairs of numbers with a difference of 6 What do you notice?'

.

5,11

7,13

Identify other pairs through reasoning, test out your reasoning and then make a generalisation.

I have noticed that : 7 is two more than 5

and that 13 is two more than 11.

So, I think that if I add the same number to each of the numbers, then the difference between the two numbers will remain the same (6).

What if ...

you subtract the same amount from each of the numbers in the calculation?

Exploring 'The Same difference' using the ITP - Number line

Use the ITP to explore the difference between two numbers. In this example the numbers are 55 and 26

Move each marker/handle to maintain the same difference and record at least 5 different calculations - for example:

55 - 26	26 + 🗆 = 55
53 - 24	24 + 🗆 = 53
50 - 21	21 + 🗆 =50
59 - 30	30 + 🗆 = 59
60 - 31	31 + 🗆 = 60

Discuss how the same difference was maintained.

Decide which calculation is the easiest to calculate mentally and why.

Subtraction -

'The Same Difference'

'The Same difference' Ian Sugarman

Ian Sugarman suggests that this mental strategy is a "more child-friendly alternative to decomposition" (Sugarman 2007).

It is based on children understanding what they are doing and the application of their number sense; their knowledge, understanding and application of number and operations.

"The algorithm involves a transformation of the given 'awkward' numbers into a pair that is much easier to work with...The logic behind this algorithm can be graphically modelled to pupils as a rectangle which highlights the difference between two numbers on a number line" (Sugarman, 2007).

Subtraction - DifferenceSubtractionInformal written methodImage: Comparison of the same Difference' Ian Sugarman, 2007Take awayDifference''The Same Difference' Ian Sugarman, 2007Take awayDifference'See Ian Sugarman article in Appendix.SubtractionSubtraction

17 - 9 = 8

minuend - subtrahend = difference

'The Same difference'

Ian Sugarman, 2007 states the following:

" All the examples I modelled followed a common pattern. The subtrahend was always a number ending in 9, 8, 7, or 6 so that it was always greater than the unit digit of the minuend. In every case, it was the subtrahend that was rounded up to the next decade. This constraining of the range of options seemed to be a sensible teaching strategy to adopt at the first exposure to the algorithm."

Two-digit - two-digit	Three-digit - two-digit
53 - 28	182 - 56
72 - 38	173 - 48
55 - 26	165 - 37
63 - 27	191 - 38
84 - 36	174 - 56
73 - 29	181 - 47
81 - 57	174 - 57
52 - 28	173 - 48

17 - 9 = 8

minuend - subtrahend = difference

'The Same difference'

As children develop their skills of using the 'same difference' we need to ensure that the children are flexible and can make decisions about which number will be rounded - the minuend or the subtrahend, and whether to round up or round down.

Children will need planned opportunities, using well designed questions, where they round up the minuend and the subtrahend, and round down the minuend and subtrahend and decide which results in the most efficient calculation for them.

This will support the development of fluency with understanding.

	Round up	Round down
Round the	90 - 42	80 - 32
minuend		
Round the		- 36
subtrahend	88 - 40	78 - 30

For most children and adults this is likely to be the favoured transformation.

Try with other calculations

Subtraction - Difference

'Counting up to find the difference"

Counting up from the smaller to the larger number

(from the subtrahend to the minuend)

Children will need to have a sound understanding of the concept of "finding the difference". Children must experience finding different missing numbers in a variety of subtraction calculations.

Children need to know that ...

Subtraction - (two-digit subtract two-digit)

Modelling using base 10 resources (Dienes or straws)

84 - 56

When using base 10 (Dienes) resources for subtraction of 84 - 56 we only show 84.

Using base 10 resources

Expanded Decomposition for 754 - 286

Model using Base 10 representations (Dienes or straws)

754 - 286

Expanded Decomposition

754	=	700 + 50 + 4
- 286		200 + 80 + 6
	_	
	=	700 + 40 + 14
		200 + 80 + 6
	=	600 + 140 + 14
		200 + 80 + 6
		400 + 60 + 8 = 468

Formal written method - Decomposition

Counting up from the smaller to the larger number

Noticing

Making links between efficient counting up on a number line and

a formal written method for subtraction.

What do you notice?

783 - 356

Addition - expanded method using knowledge of place value

Addition - expanded method using knowledge of place value and mental calculation

67 + 25 = 92

addend + addend

sum

=

Expanded vertical method three-digit + three-digit Addition of ones crosses into the tens Addition of tens crosses into the hundreds Addition of hundreds crosses into thousands

Expanded vertical method four-digit + three-digit Addition of ones crosses into the tens Addition of tens crosses into the hundreds Addition of hundreds crosses into thousands

Using the formal written method for addition

Experience of lots of addition questions, with NO 'carrying', using a formal written method, can lead to misconceptions.

If children have reached the stage where they are being asked to calculate using a 'formal written method', where there is NO 'carrying, *then it must be the case* that they have all the skills, knowledge and understanding necessary to carry out these calculations mentally, particularly if they are two-digit add two-digit calculations!

Addition - formal written method

247 + 35 = 282

addend + addend = sum

Addition—formal written method

247 + 35 = 282 addend + addend = sum

Addition—formal written method

Subtraction

Extending to decimal numbers

Extending methods to include decimal numbers

Methods used should also be applied to a range of decimal numbers, including measurements. Children's understanding of place value must be at a sufficient level for them to use decimal numbers effectively within calculations.

Find the difference between two three-digit sums of money, with and	£8.95 - £4.38
without adjustment from the pence to the pounds.	£7.50 - £2.84
Find the difference between two decimal fractions containing the same number of decimal places, with up to three digits.	9.42 - 6.78 72.5km - 4.6km
Find the difference between decimal fractions containing either	324.9 - 7.25
one or two decimal places, with up to three digits.	14.24 - 8.7

Time

Difference should be calculated on a number line

30

It is important that children **always** look at a calculation and make decisions about which strategy to use.

Children need to ask themselves		
Can I do this in my head?	-	Use a mental strategy
Can I do this in my head with jottings?	-	Use a mental strategy and make jottings
Should I use an informal written method?	-	Use an informal written method
Should I use a formal written method?	-	Use a formal written method

Sort these calculations into the categories above and discuss with your partner.

Then calculate and discuss the decisions you made.

176 - 40	84 - 56
2001 - 1997	342 - 157
385 - 165	815 - 278
555 - 99	421 - 397
3005 - 1998	604 - 288
264 - 49	303 - 117

I would do this mentally, in my head

I would do this mentally with jottings

I would use an informal written method

I would use a formal written method

176 - 40	84 - 56
2001 - 1997	342 - 157
385 - 165	815 - 278
555 - 99	421 - 397
3005 - 1998	604 - 288
264 - 49	303 - 117

Appendix

Subtraction using:

Rekenrek: Take away'

Rekenrek: Difference

Rekenrek: One more, one less

Cuisenaire: Difference

Negative Number strategy

ITP - Interactive Teaching Programs: Difference

Making decisions about subtraction:

Appendix - page 1

Subtraction - Take away

Using 'tools to think with' - Rekenrek

The Rekenrek

Here are some rules about using a Rekenrek:

- The beads are not counted, the children are encouraged to subitise (to know how many without counting).
- The starting position should show all beads pushed to the far right.
- Children enter the number by sliding beads to the left in a one-push motion.

Subtraction

Difference

Take awav

Using one row on the Rekenrek - the other row is covered with paper or a cloth

This model allows children to develop their conceptual understanding of addition and subtraction at the same time. They compose and decompose numbers, developing fluency with understanding.

The beads on the Rekenrek above show:

- That seven is made up of 5 and 2 more
- That seven is made up of 2 and 5 more
- That ten is made up of 5 and 2 and 3 or 7 and 3 or 3 and 7...
- That 10 take away 7 is 3
- The three beads on the right can be covered and the children are asked to say how many are hidden and how they know.

Using both rows on the Rekenrek

This model allows children to develop their conceptual understanding of addition and subtraction at the same time. They compose and decompose numbers, developing fluency with understanding.

The beads on the Rekenrek above show that:

- Ten can be 5 red beads and 5 white beads
- Ten can also be 5 red bead on one row and 5 red beads on the other row
- Twelve is 10 reds beads and 2 white beads
- Ten is 7 and 3
- Ten is 5 and 5
- Twenty is... 12 and 8 / 8 and 12 / 5 and 5 and 2 and 3 and 5 / 7 and 3 and 5 and 5...
- Twenty take away 12 is 8 / twenty take away 8 is 12 ...
- Seven is 2 more that 5 / 5 is 2 less than 7 ...
- The difference between 7 and 5 is 2...

© Sarah White and NPAT 2014

Appendix - page 3 Subtraction - Difference Using 'tools to think with' - Rekenrek Take away Difference

Rekenrek

This Rekenrek shows: The difference between 10 and 3 is 7 Children could also state the following: 7 is 3 less than 10

A difference of...

Move 3 beads to the left of the Rekenrek on the top row As children to move beads on the bottom row so that there is a difference of 2 How many different ways can you make a difference of 2? Try other numbers.

Find the difference...

(a game for two children)

Resources: a set of 1 to 10 cards, one Rekenrek between 2 children

- 1. One child turns over a card and slides that number of beads on the Rekenrek
- 2. The second child turns over a card and slides that number of beads on the Rekenrek

3. Find the difference between the two numbers.

4. Children record in their own way (or use the Rekenrek recording paper).

Appendix - page 5SubtractionSubtraction - One less, one moreImage: SubtractionUsing 'tools to think with' - RekenrekTake awayDifference

The Rekenrek

Here are some rules about using a Rekenrek:

- The beads are not counted, the children are encouraged to subitise (to know how many without counting).
- The starting position should show all beads pushed to the far right.
- Children enter the number by sliding beads to the left in a **one-push** motion.

Using one row on the Rekenrek - the other row is covered with paper or a cloth

One less, One more

The Rekenrek allows children to develop their conceptual understanding of addition and subtraction at the same time. They compose and decompose numbers, developing fluency with understanding.

Children will know how many without counting because during their experience of using the Rekenrek they will have become fluent in showing a given number in **one push**.

Develop this so that children can say how many beads there would be if there was one less. Ensure that you do not translate the meaning of less for the children by giving the instruction to "take away one". Children need to learn and become fluent with the meaning of less.

Ask children to say what have they done in a sentence - "One less than seven is six". This ensures that the children are not just responding to the word less but, that they are also building their mathematical vocabulary bank so that they use and apply this new concept through doing and saying.

Appendix - page 4

Subtraction - Difference

Using 'tools to think with' - Cuisenaire

Cuisenaire

Children need to recognise all the rods by sight and by touch in order to be able to use them for developing their conceptual understanding.

Spin it, find it, spin it, find it, Compare and

find the difference...

(a game for players)

Resources: Cuisenaire rods, 0 - 10 or 5 - 15 spinner (appendix)

Note: **No counting** - children must find the correct Cuisenaire rods, compare them and identify the difference without counting, by attending to the size of the space and identifying the rod that would fit in that space

1. Spin the spinner and find the correct rod.

2. Spin the spinner again and find the correct rod.

3. Compare the two rods and say the difference without counting.

4. Say and write the number sentence using words.

There is a difference of 2 between 9 and 7

The difference between 9 and 7 is 2

5. Repeat at least 10 times

Describe what you see...

encourage children to describe what they see in other ways:

9 is 2 more than 7

7 is 2 less than 9

Use nrich activity called Tug of War 5897 to develop conceptual understanding of negative numbers

1 3 3 - 7 8	3 5 1 -2 2 8	4 5 6 -2 8 7
100 - 40 - 5 = 55	100 + 30 - 7 = 123	200 - 30 - 1 = 169
	2027	
	-1658	

1000 - 600 - 30 - 1 = 369

Difference ITP

This ITP allows you to compare two rows of beads and to analyse the calculations they can represent.

It can be used to promote the language of addition and subtraction, particularly the interpretation of difference.

Select the number of yellow and white beads to view (the maximum is 30) Click on the numbers to make the beads appear on screen. You can move each row of beads up and down the screen at any point.

Click the play button to start each stage of the animation. The sequence is:

- The top yellow bead line moves down until it is in line with the white bead line. The shorter line will be on top so that you can compare both bead lines.
- A number line representing the yellow bead line appears.
- A number line representing the white bead line appears.
- The number lines merge and the difference is shown as a 'jump'.

difference is shown as a 'jump' on the number line

_ _ _ _ _ _ _ _ _

Sarah White and NPAT 2014

Subtraction Subtraction
Which strategy and why?
Take away Difference

17 - 9 = 8

minuend - subtrahend = difference

- 10,000 10
- 249 99
- 5008 2994
- 136 84
- 709 198

Resources

Rekenrek recording frame Spinners for games Blank Spinners

